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The  vibrations  are  investigated of a >antilever  plate of infinite  width 

moving  in a gas  with  large  supersonic  velocity  in  the  direction  from  the 

clamped  to  the  free  edge.  The  pressure of the  gas  is  taken  into  account by a n  

approximate  formula. 

Under  the  conditions of the  two-dimensional  problem  the  relation  is  stud- 

ied  between  the  characteristics of the  natural  vibrations  and  the  velocity of 

motion of the  plate  and  certain  conclusions  drawn  on  the  stability of the  mo- 

tion. A formula  for  the  critical  velocity  is  obtained. 

The  formulation of the  problem  here  considered  is  due  to A.  A. Ilyushin 

to whom the  author  wishes  to  express  his  deep-felt  thanks  for his help  and 

valuable  remarks. 

1. Fundamental  equations.  The  acting  forces  and  the  geometrical  con- 

straints on the  boundary of the  plate  here  studied  permit it to  move  in i ts  

plane  rectilinearly  with  constant  velocity c in a certain  gas  medium. In the 

plane of this  undisturbed  motion  we  introduce a rectangular  system of coordi- 

nates x, y moving  rectilinearly  together  with  the  plate  with  velocity 5 along 

t$e x-axis (Fig.  1). The  plate,  clamped  at  the  edge x = 0 and  free  at  the  edge 

x = a, i s  a s t r ip  of infinite  width  along  the  y-axis  between  these  edges. 

- 

" 

b5 The small deflection w(x, y, t,) of the points. of the  plate 

satisfies  the  equation 

P W  P w  a% 
+ + 2 - + - ) = 9  (.=-) 3 (I 2 Eh' - v') 

Fig. 1 

" 

-n 
* I f O  kolebaniiakh  plactinki dviausQhe:sz v gaze.  Prikladnaia 
Matematika i Mekhanika.  vol. 20, no. 2. 1956, pp. 211-222. 
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and  the  corresponding  boundary  conditions  (ref. [l]. The  transverse  load q 

acting  on  the  moving  plate is made up of the  inertia  forces 
- 

q, = - 2hp - b W  

at2 

and  the  aerodynamic  forces 1 

where Lh is  the  thickness of the  plate, p the  density of the  material  of the 

plate, D the  rigidity of the  plate, E Young's modulus of the  material  of the 

plate, v the  Poisson  ratio of the  material  of the  plate, c the  velocity of the 

undisturbed  motion of the  plate, B a nonnegative  number  characterizing  the 

properties of the  gas  in  which  the  plate  moves, po the  pressure of the g a s  a t  

infinity, K the  polytropic  exponent of the gas ,  co  the  velocity of sound in the 

gas  at  infinity. 

- 

We shall   assume all quantities  entering  the  problem to  be  independent 

of the  coordinate y (two-dimensional  problem).  Then,  introducing  the  quan- 

tity  xfa  and  keeping  for  it  the  same  notation ~f as before,  the  problem  under 

consideration  can  be  described by the  equations 

- 

We shall  consider  solutions of the  problem  that  are  representable  in  the 

form 

where X(x)  is a complex  function of a real   var iable  x, and w = p t iq is a ce r -  

tain  complex  number  which we shall  call  the  complex  frequency. 
- 

"- 
lThis  formula  for  the  aerodynamic  forces  acting  on a thin  plate  moving  in a 

&as with  larde  supersonic  velocity  was  communicated  to  the  author by A.  A. 
Ilyushin. 
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The  complex  solution (1.2) breaks down into  the  real  solutions 

The  motions of the  plate  corresponding  to  the  real  solutions  (1.3)  we  shall 

term  the  natural  motions of the  plate. 

Depending  on p the  amplitude of the  natural  motions IX(x)lePt can  decrease - 
with  time,  remain unchanged, o r  increase.  If the  real  frequency  q  is  not  equal 

to  zero,  the  natural  motions  have  the  character of vibrations.  These  vibrations 

for + =-const.  resemble  standing  waves  while  for + # const.  they  resemble  run- 

ning waves  the  velocity of propagation of which - q/(d+/dx)  for  d+/dx # const. 

is  different at different  points of the  plate. 

- 

Substituting  (1.2)  in (1.1) and  introducing  the  notations 

we find  that  the  function  (1.2) i s  a solution of the  problem if and  only if  X(x) 

is  an  eigenfunction of the  boundary  problem 

X 

and  the  complex  frequency w is determined  corresponding  to  the  eigenvalue 

X from  relation (1.5): 

We shall   call   the  parameter A in  equation  (1.6)  the  reduced  velocity of 

motion of the  plate  or  simply  the  velocity A. 
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The  fundamental  boundary  problem (1.6) for A # 0 is  not  selfadjoint; 

hence its eigenvalues A,  generally  speaking,  can  be  situated  in  the  complex 

plane  and  not  only  on  the  real  axis. 

For  real   eigenvalues A the  eigenfunctions  X(x) of the  fundamental  boun- 

dary  problem  can  be  chosen  to  be  real.  Then  in  formulas (1.3)  +(x) = const, 

and  the  natural  motions, i f  of a vibrational  character,  resemble  standing 

waves. 

For  complex  eigenvalues A the  corresponding  functions  X(x)  are  always 

complex so that  in  formulas ( 1 . 3 )  +(x) # const.   and  the  natural   motions  re- 

semble  running  wave s .  

F o r  any A one of the  values t1.7) of the  complex  frequency w has  a  nega- 

tive  real  part.  The  second  value  (1.7)  has a negative  real   part  if  A is   located 

in  the  complex  plane  within a second  degree  parabola 

ReX= - 2a4B2 ' l p D  (Im A)2 

(Fig.  2 ) ,  a zero   rea l   par t  if  A is   located on  the  same  parabola  (1.8),  and a 

posit ive  real   part  if  A is  located  outside  the  parabola  (1.8). 

The  number of eigenvalues A of the  boundary  problem EA that  are  located  outside  the  limits of parabola  (1.8) we shall 

denote as   the   degree  of instability of the  undisturbed  motion, 

and  the  parabola (1.8)  we shall  denote  as  the  stability  parab- 

ola. Fig. 2 

The  eigenvalues A of the  fundamental  boundary  problem 

are  connected  with  the  corresponding  eigenfunctions by the  relation 

obtained by multiplying  the  first of equations (1.6) by x and  integrating by 

parts,  making  use of the  boundary  conditions.  From  this  relation it i s   seen  

that  for A = 0 all eigenvalues h of the  fundamental  boundary  problem  are  real 

and PO sitive. 

2 .  Change of eigenvalues of fundamental  boundary  problem  with  change of 
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velocity of motion.  For  fixed A, A any  solution of equation (1.6) is a linear 

combination 

of four of its linearly  independent  solutions  Xi(A, A;  x). We shall  seek  them 

in  the  form X = e-ZX,  where z = z(A,A) are   the  roots  of the  characterist ic 

equation 

Setting up expression  (2.1)  and  subjecting it to  the  boundary  conditions  (1.6) 

it can  easily  be  shown  that  the  roots  zl, 22, 23, 24 satisfy  the  equation 

where 

i f  and  only i f  in  equation (2.2) there  is  substituted  for A the  eigenvalue of the 

fundamental  boundary  problem,  for  given A. The  denominator  in  (2.3)  is  put i n  

in  order  that  the  above  mentioned  property of the  function F is  maintained  in 

the  case of multiple  roots of equation (2.2) 

If in  (2.3)  there  are  substituted  the  explicit  expressions  for  the  roots 

z i  = zi(A, A )  a s  functions of A, A there  is  obtained  the  equation 

F ( A ,  X ) = O  (2.4) 

connecting  the  velocity A and  the  eigenvalues A of the  fundamental  boundary 

problem.  Equation  (2.4)  is  very  cumbersome. In order  to  simplify  the  inves- 

tigation  we  shall  in  equation  (2.4)  pass  from  the  parameters  A, h to  other 

parameters.  As  the  fundamental  parameters we shall at first   consider any 
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two roots 21, 22 of equation (2.2). In terms of 21, 22 the  roots 23, 24 and  the 

parameters  A, h have  the  expression 

Then  from  the  parameters 21, 22 by the  transformation 

we pass  to  the  parameters a, p. 

The  system of equations (2.8),  (2.9) in  which  the  velocity A is  considered 

a s  a known  quantity  while  the  parameters a,p a r e  unknown possesses  the 

property  that  to  each  solution (a, p) there  corresponds,  by formula (2.7),  an  

eigenvalue h of the  fundamental  boundary  problem;  to  each  eigenvalue of the 

fundamental  boundary  problem,  for  given A, there  corresponds  at  least  one 

solution (a, p) of the  system (2.8),  (2.9). 

We shall  denote  the  system (2.8),  (2.9) as   the  character is t ic   system.  Let  

us consider  some of i ts   properties.  

For given A let  the  pair of numbers (a, p) be a solution of the  charac- 

terist ic  system.  Then  for  the  same A its solutions  will  also  be 
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(2.10) 

Such  solutions,  obtained  from  the  initial  solution (a, p) by a change of 

numeration of the  roots  zi  in  formulas  (2.5), (2.6), give  the  same  eigenvalue 

as  the  solution (a, p). That is, in  order  to  investigate  all  eigenvalues it i s  not 

necessary  to  consider all solutions of the  characteristic  system  but it i s  suffi- 

cient  to  consider  only a par t  of them,  the  so-called  essential  solutions. 

The  essential  solutions  can  easily  be found for A = 0. F r o m  equation  (2.8) 

for  A = 0. there  is obtained  either a = 0 o r  a = fp. For  tnese  cases  equation 

(2.9) assumes  respectively  the  forms: 

Consideration of the  real  positive  roots p of  the first of equations  (2.11) 

leads  to  the  obtaining of all essential  solutions of the  characteristic  system 

for  A = 0: 

(a1 = 0, = 1.8751). (a, = 0, p2 = 4.6941), (a, = 0, p, = 7.8548) 

(a4 = 0. a4 = 10.9955), (a, = O ,  an, = (m-$) z) ( m - m . 7  .... ) (2.12) 

The  remaining  roots of the first of equations (2.11) and  also  the  roots of 

the  second  equation  need  not  be  considered  because  they  lead  to  the  solutions 

(a, p) which are  connected  with  the  obtained  solutions  (2.12)  precisely by for-  

mulas (2.10).  

Let (a = 0, p = Pm) be  one of the  points  (2.12). At the  point ( 0 ,  Pm) the 

relations  are  satisfied 

By the  theorem  on  implicit  functions [2] (p.  354) there  exists  in a certain 

neighborhood of the  point (0, pm) a single  analytical  function p = pm(a)  con- 

verting  equation  (2.9)  into an  identity.  The  function F(a, p) for   rea l   a ,  p i s   rea l ;  

hence  the  function p = Pm(a) for   rea l  a assumes  real   values .  
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Let  us  consider  the  equation 

f ( A ,  a, p, (a)) = A - 4a 1Pm2 (a) - a*] = 0 (2.13) 

which is a resul t  of substituting P = Pm(a) in  the  right  hand  side of equation 

(2.8). At the  point (A = 0, a = 0)  the  relations f = 0 ,  i3$/aa = - 4pm2 # 0 a r e  

satisfied. 

By the  theorem  on  implicit  functions  there  exists  in a certain  neighbor- 

hood of the  point (A = 0, a = 0) a unique  analytical  function a = am(A) convert- 

ing  equation  (2.13)  into  an  identity  and  assuming  for  real A real   values.   The 

substitution a = am(A) in  the  expression P = Pm(a) leads  to  the  anaiytic  func- 

tion p = Pm(A). 

Thus,  for  sufficiently small IAI there  exists a unique pair  of analytical 

functions 

which  convert  both  equations of the  characteristic  system  into  identities,  with 

am(0) = 0 ,  Pm(0) = Pm. The  pair of functions  (2.14)  for  varying A determines 

in  the  space of quantities a, P a unique  analytical  curve  passing  for A = 0 

through  the  point ( 0 ,  Pm). To real  sufficiently small A correspond  real  points 

(a,P) of the  curve  (2.14). 

Through  each  point ( 2 . 1 L )  passes   i ts  unique  analytical  curve  (2.14),  real 

for  sufficiently small rea l  A, constituted  only of the  solutions of the  charac- 

teristic  system.  The  curves  (2.14)  will  be  denoted as the  branches of the 

characterist ic  system. 

If for A = 0 ,  besides  the  points  (2.12),  some  other  points (a,P) are   con-  

sidered - solutions of the  characteristic  system,  then it can  be  found  that 

through  each  such  point  there  passes a single  branch of the  characteristic 

system;  the  study of these  branches  does  not  however  give  any  new  eigen- 

values. 

Let  us  consider  some  branch of (2.14). F o r  a change of A in  the  interval 

0 < A 1. A' let  the  branch  exist  and  not  intersect  with  any  other  branches of 

the  characteristic  system,  Since A' > 0 ,  a # 0 in  the  neighborhood of the  point 

(am' = am(A'), p& = Pm(A') [see  (2.8)]. In the neighborhood of this  point  we  find 



9 

from  equation  (2.8) 

(2.15) 

Substituting  (2.15)  in  equation  (2.9)  we  obtain  the  equation F (A, a) = 0, the 

left  hand  side of which  in  the  neighborhood of the  point (A’, am’) is   an  analy-  

tical  function of i ts   arguments.  At the  point  (A’, am*) itself  the  relations 

F(A’,  am*) = 0, F(A’, a) f 0, F(A,  am.) $. 0 are  satisfied.  The  satisfying of 

these  relations  and  the  analytic  character of F(A, a)  are  sufficient  conditions 

for  the  application of the  Weierstrass  lemma  [3]  (p.  137).  According  to  this 

lemma  there  exists  in  the  neighborhood of the  point (A’, am*) the  representa- 

tion 

where r is a nonnegative  integer,  fi(A)  is  an  analytical  function  becoming  zero 

for A = A’ and  @(A, a) an  analytical  function of i ts   arguments,  not  becoming 

zero  in  the  neighborhood of the  point (A’, am*). From  the  representation 

(2.16) it  follows  that  in  the  neighborhood of the  point  (A’, am*) the  equation 

F(A, a) = 0 i s  equivalent  to  the  equation 

- 

For   rea l  A 1. A’ in  the  neighborhood of the  point  (A’, am1) there  exists a 

single  branch of (2.14),  whence  follows  the  equation r = 1. Now from (2.17). 

(2.15) we find a = am* - fl (A) = am(A), P = Pm(A).  The  obtained  functions 

determine  in  the  neighborhood of the  point (am*, Pm*) a single  analytical  curve 

not  only for  values A 5 A’ but also  for  values A > A’. The  meaning of the  pre- 

ceding  considerations i s  that,  in  the  first  place,  the  branch  considered  cannot 

cease  existing  for A > A’ if  it exists  for A 5 A’, and  secondly,  cannot  abranch 

out,” i.e.  cannot  be of such  character  that  for A 5 A’ in  the  neighborhood of 

the  point  (am*,  Pm’)  there  exists  one  branch,  while  for A > A’ two o r   more  

branches. 

Let A” > 0 be  that  value of the  magnitude A for  which r different  branches - 
of the  characterist ic  system  have a cornrnon  point (am”, P m n ) .  Applying the 
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same  considerations  for  the  neighborhood of the  point (am", Pm") that  were 
applied  for  the  neighborhood of the  point (am', Pm') we  discover  with  the  aid 

of the  Weierstrass  lemma  that  the  branches  existing  separately  before  inter- 

section  (for A < A")  continue  to  exist  separ- 

ately  in  the  same  number r after  intersection 

(for A > A"). 
- 

The  above  proven  properties of "nondes- 

tructibility" of the  branches of the  charac- 

ter is t ic   system  are   easi ly   carr ied  over  to 

the  branches A = Am(A) of equation (2.4), 
Fig. 3 .  obtained  from  the  branches (2.14) by recom- 

putation by formula (2.7). 

We now introduce  rectangular  Cartesian  coordinates a, p in  the  plane  and 

making  use of the  real   essential   branches (2.14) for   small   real  A we come  to 

the  question of their  position  in  the  plane,  a,p. 

It is  sufficient  to  conduct  the  investigation  in  the  upper half of the  plane 

a, P in  view of the  fact  that  the  equations of the  character is t ic   system  are  

even  with  respect  to p. 

The  line  Il,(A),  determined by equation (2.8) for A = 0, consists of three 

straight  lines a = 0, a = p, a = -p and,  for A # 0, of two separate  pieces  each 

of which  can  be  constructed  point by point  with  the  aid of relation  (2.15). 

Fig. 3 shows  the  position of the  curves P1(A) for  three  increasing  values of A. 

With increase of A > 0 the  curves  Il(A)  are  displaced  upward  in  the  first 

quadrant  and  to  the  left  in  the  second  quadrant. 

Whatever  the  value of A > 0 the  curves  Il(A) of the  first  quadrant  have 

as  asymptotes  the  straight  l ines a = 0, a = p, and  the  curves of the  second 

quadrant  the  straight  line a = - p .  

F o r  what  follows it is  useful  to know how the  magnitude A = (a2 t p 2 )  
(pz - 3a2)  varies  along  the  curve  I l(A).   From (2.7), (2.8) we find  that  along 

the  curve  Il(A) 
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That  is  to  say,  for a motion  along  the  curve 

P1(A) in  the first quadrant  from  right  to left (in 

the  direction of decreasing  a)  the  magnitude h 

increases.  

For  A > 0 the  points of intersection of the 

curve Bl(A)  with  the  curves P2, determined by 

equation  (2.9),  will  be  numbered  in  such  manner 

that  to a larger  number m will  correspond a 

smaller  value  am(A) . The  real  eigenvalues 

hm(A)  will  then  increase  with  increase  in  the 

number  m. 

- 

Fig. 4. L 

The  curves Bl(A) and  .fl(-A) a re   symme-  

trical  with respect to the  straight  line a = 0. 

For  convenience  in  studying  the  curves 12 of equation (2.9)  we shall  con- 

sider  the  region Qn bounded by the  segments of the  lines 

For  any  value of the  velocity A in  each of the  regions Qn with a suffi- 

ciently  large  number n the  curve P1(A) intersects  the  curves 1, exactly  in 

two real  points. With the  aid of (2.8), (2.9)  we can  show  that  these  points, 

with increase  in  the  number - n,  asymptotically  approach  the  corresponding 

points  (2.12) of the  essential  branches  for A = 0, that   is ,  

- 

Whence with  the  aid of formula (2.7)  we  conclude  that  the  eigenvalues 

Am(A) for  sufficiently  large - m'are   rea l ;   wi th   increase   in  m they  asymptotic- 

ally  approach  the  eigenvalues h,(O) for A = 0. 
- 



We denote by the  symbol  Qn(F < 0) that  part of the  region Qn where 

F(a,P) < 0. It is easily  shown  that  to  the  regions  Qn(F < 0) belong  the  segments 

a = 0, f3zn-1 < p < P2n (n = 1,  2, ...), where Pm a r e  given by the  equations 
(2.12) (segments PIP2, p3p4, ... of the  p-axis  in  Fig. 4 ) ,  the  segments 0 a 5 
- < p/&, p = (2n- l ) r  (n = 1,  2 ,... ),  (the  segments ylyl', y2yi ,  ... in  Fig. 4) ,  

and  the  segments p = a n ,  p'zn-l < p < p i n  (n = 1, 2, ...) where pmv a r e  

given by the  equations 

(segments p i  p i ,  p i ,  ... in  F i g .  4) . 
The  last  statement  for  example  follows  from  the  fact  that  along  the 

straight  line p = a f l  the  left  side of equation (2.9) 

becomes  zero  for  the  values  (2.18),  being  negative  in  the  intervals 

Let  us  consider  the  curve ll(A) passing  through  the  point yi of the  region 

Ql(F<O)  with  coordinates ( r / G r )  (the  dotted  curve  in  Fig. 4 ) .  The  corre- 

sponding  value of A is  equal  to lOr3 /3  G. 

For  this  value of A, and  also  for  any  value of,A from  the  interval 0 5 A 

- < l o r 3 /  3 6 the  curve ll (A) in  each of the  regions  intersects  the  segment 
ynyG of the  region  Qn(F < 0) .  From  this  and  from  the  '*indestructibility"  prop- 

erty it follows  that  for  any  value of A from  the  interval  under  consideration 

the  curve  ll(A)  in  each of the  regions Qn has  exactly two different  real  inter- 

sections  with  the  lines 1,. In the  regions Q2, Q3, ... these  intersections  are 

located  to  the  left of the  straight  line p = a c  and  hence  the  eigenvalues 

hm(A)  for m > 2 a r e  all positive. 

In the  region  Qlthe  curve l l (A) for  the  value A = 10 n 3 / 3 G  intersects 

the  segment pi, p i  of the  region QI(F < 0 ) .  From  this  we conclude  that  any 

points of the  segments P1 p2, ylyi, pip;, for  which F(a,p) < 0 can  be  connected 

with  each  other by a continuous  curve  not  going  out  beyond  the  limits of the 



region Q1(F < 0)  . That is to  say,  the  part of the  region Q1 (F < 0)  adjoining 

the  segments p1p2, ylyi, pi, p i  in  the first quadrant  has  qualitatively  the  ap- 

pearance shown in  Fig. 4. 

For  those  values of A for  which  the  curve I1(A) intersects  the  internal 

points of the  segment p i  p i  of the  straight  line p = a n  the  eigenvalues 

AZ(A), A3(A), ... are  different,  real  and  positive,  and  the first eigenvalue Al(A) 

is  negative  (the  first  point of intersection of the  curves I1(A) and 1, i s  located 

to  the  right of the  straight  line p = a C ) .  

Fig. 3 .  F i g .  6. 

Through  the  points pi, p i  there  pass  the  curves Pl(A) with  the  values 

A = 6.33  and A = 161. F o r  any A of the  interval 0 5 A < 6.33 all eigenvalues 

of the  fundamental  boundary  problem  are  different,  real  and  positive.  For 

A = 6.33 all  eigenvalues  are  different,  real  and,  except  for Al,  positive,  while 

the  first  eigenvalue  is  equal  to  zero.  For any A of the  interval 6.33 < A < 161 
all eigenvalues  are  different,  real  and,  except  for AI,  positive,  while  the  first 

eigenvalue i s  negative. 

Let A' be  the  upper bound of those  values of A for  which  the  curve P1(A) has 

real  points  in  common  with  the  region  Ql(F < 0 ) .  In the  neighborhood of the 

value of A::: for A < A:: the  curve P1(A) in  the  region Q1 has two different  real 

intersections  with  the  curve Iz, while  for A > A* it has not a single  real   inter-  

section. On account of the  indestructibility  in  the  neighborhood of A:: for 

A > A::: the  curve P1(A) has two different  complex  intersections  (the  points of 

the  first  and  second  essential  branches  of  the  characteristic  system  become 

complex).  The  corresponding  values of Al(A) and A2(A) become  conjugate 

complex  numbers. 
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The results of the  numerical  computations  entirely  confirm  the  preceding 

conclusions. With the  aid of the  representations a = a + CIF(a,p) or p = p 4 
4- CzF(a,/3),  where C1, C2 a r e  constants  different  from  zero,  individual  points 

(a,p) of. the  curves l2 situated  in  the  regions Q1, Qb were found by the  method 

of successive  approximations.  The  curves l2 a r e  shown  in  Fig. 5. For  those 

points (a,p) however by which  the  curves of Fig. 5 were  constructed  the 

corresponding  points (A, A )  were  found  with  the  aid of formulas (2.7) ,  ( 2 . 8 )  

and  the  curves of Fig. 6 constructed  which  give  an  idea of the  change of the 

first  four  eigenvalues of the  fundamental  boundary  problem  with  change  in 

the  velocity A. F i g .  7 shows  to a larger   scale   par t  of Fig. 6 near  the  origin. 

A s  supplementary  to  Figs. 6 ,  7 we present  

below  the  data on the  behavior of the  first  four 

eigenvalues  for  various  values of the  velocity A: 

-ID 

Fig. 7. 

O < A < 6 : 3 3 ,  

A = 6.33, 

6 . 3 3 < A < 1 6 2 .  

162<A<745,  

O<A<161,  

A = 161, 

161 < A < 1 6 2 ,  

162<A<745, 

145<A<777. 

O G A G 7 7 7 ,  
777 < A < 1672, 

O G A G 1 6 8 8 ,  

745 A < 746, 
A = 746, 

746 < A < 2 0 4 i ,  

2 Q 4 7 < A < * ,  

717 < A <  1672. 

1672&A<2046.1, 

A - 2 0 4 6 . 7 ,  

2046.7<A<2047, 

1047<A<te , 
1672<A,<1688, 

I W < A < * ,  

1 m < A < *  I 

(2.19) 

The  asterisks  indicate  values  not  determined by us.  Multiple  eigenvalues 

were  noted  in  the  following  cases: 

t No real values for ( X y s  found. 



3. - Character - of the  natural  motions  for  different  velocities of motion of 

the  plate.  Critical  velocity.  For  zero  value of the  velocity A all eigenvalues 

hm(0) of the  fundamental  boundary  problem a r e  different,  real  and  positive, 

and are  located  in  the  complex  plane  within  the  stability  parabola;  moreover 

The  complex  frequencies,  with  the  possible  exception of several  of the 

first frequencies, are given by the  formulas 

All natural  motions  have  an  amplitude  decreasing  with  time; if  they  have 

an  oscillatory  character  they  are  similar  to  standing  waves. 

Whatever  the  velocity  A # 0, all natural  motions  corresponding  to  hm(A) 

with  sufficiently  large  numbers  m,  have  the  same  character  that  they  had  for 

A = 0. This  assertion, which  follows  from  the  asymptotic  approach of hm(A) 

to Am(0) a s  m -c 00, means,  in  other  words,  that  the  high  frequency  vibrations 

of the  plate  are  less  distorted by the  oncoming  gas  flow  the  larger  their  fre- 

quency. 

- 

For  any  value of the  velocity A in  the  interval 0 5 A < 6.33 the  degree of 

instability of the  undisturbed  motion  is  equal  to  zero. All natural  motions  have 

an  amplitude  which  decreases  with  time. 

For  any  value of the  velocity A in  the  interval 6.33 < A < 161 the  degree 

of instability of the  undisturbed  motion  is  equal  to  unity. One of the  natural 

motions,  corresponding  to  the  first  eigenvalue,  has  an  amplitude  increasing 

with  time;  the  motion  has  the  character of an  aperiodic  deviation  from  the 

undisturbed  state  and  is  termed  the  divergent  motion  or  simply  the  divergence. 

The  remaining  natural  motions  have  an  amplitude  which  decreases  with  time. 

The  interval  6.33 < A < 161  belongs  to  the  instability  range of the  undisturbed 

motion. 

The  value of the  velocity  A = 6.33  on passing  through  which  the  degree of 

instability of the  undisturbed  motion  changes  from  zero  to  one we shall  denote 

as   the  cr i t ical .   For  A= 6.33 all eig,envalues  hm(6.33) are  different,  real and 



16 

except  the  first,  positive,  the first eigenvalue  being  equal  to  zero.  One of the 

natural  motions,  corresponding  to this zero A, is the  motion of the  plate  with 

constant  deflection  w(x)  independent of the  time.  The  remaining  natural 

motions  have  an  amplitude  decreasing  with  time. 

For  any  value of the  velocity A in  the  interval 161 < A 162 all eigen- 

values Am@) of the  fundamental  boundary  problem a r e  different,  real  and, 

except hl (A)  and A2(A), positive,  the  first two values  being  negative;  the 

degree of instability of the  undisturbed  motion  is  equal  to  two. Two indepen- 

dent  natural  motions  have  the  character of an  aperiodic  deviation  from  the 

undisturbed  state,  that  is,  the  character of divergence.  The  remaining  natural 

motions  have  amplitudes  decreasing  with  time.  The  interval  161 < A < 162 

belongs to the  instability  range of the  undisturbed  motion. 

The  value of the  velocity A = 161  on  passing  through  which  the  degree of 

instability of the  undisturbed  motion  increases  from  one  to two  we shall  like- 

wise  denote as   c r i t i ca l .   For  A = 161 all eigenvalues Am(161) of the  funda- 

mental  boundary  problem  are  different,  real  and,  except ~ ~ ( 1 6 1 )  and ~ ~ ( l b l ) ,  

positive;  the first eigenvalue  is  negative  while  the  second  is  equal  to  zero. 

The  value A = 161 belongs  to  the  instability  range of the  undisturbed  motion. 

For  any  value A of the  interval 162 5 A 5 745 the eigenvalues A3(A), 

A4(A), ... are  different,  real,  positive  and  located  inthe  complex  plane  within 

the  stability  parabola;  the  degree of instability  is  determined by the  behavior 

of Al(A) t Az(A)  

For  A = 162 the two first  eigenvalues of the  fundamental  boundary  prob- 

lem  coincide, ~ ~ ( 1 6 2 )  = ~ ~ ( 1 6 2 )  = -26. In the  neighborhood of A = 162 for 

A > 162 the  eigenvalues Al(A) and Az(A) a r e  complex  conjugate  numbers, 

situated  in  the  complex  plane  outside  the  limits of the  stability  parabola. In 

this  neighborhood,  belonging  to  the  instability  range of the  undisturbed mo- 

tion,  the  degree of instability,  as  in  the  interval  161 < A < 162, is  equal  to 

two;  however,  the  natural  motions  with  increasing  amplitude,  which  corre- 

spond  to  the  eigenvalues Al(A) and Az(A), have  a  different  character,  which 

now resembles  waves of a flag  in windy weather.  Such  wave  motions  with 

increasing  amplitude  are  denoted  as  flutter  motions  or  simply  flutter. 

Thus, as  the  velocity A passes  through  the  value A = 162  the  divergence 

of the  plate  changes  to  flutter. 



For  A = 745 the  two first eigenvalues of the  fundamental  boundary  prob- 

lem  again  coincide, A1(745) = A2(745) = 41. In the  neighborhood of A = 745 for  

A < 745 the  eigenvalues Al(A) and  h2(A) are complex  conjugate  numbers sit- 

uated  in  the  complex  plane  within  the  stability  parabola. In this  neighborhood 

the  degree of instability of the  undisturbed  motion is equal  to  zero. 

F o r  a certain  cri t ical   value  A  in  the  interval 162 < A < 745 the  degree of 

instability of the  undisturbed  motion  changes  from two to  zero;  the  flutter 

natural  motions  are  changed  to  motions  with  decreasing  amplitude. 

The  degree of instability of the  undisturbed  motion  remains  equal  to  zero 

also  in  the  interval 745 < A < 746, since  for  any  value of A  in  this  interval all 

eigenvalues of the  fundamental  boundary  problem a r e  different,  real  and  posi- 

tive,  being  situated  in  the  complex  plane  within  the  stability  parabola. 

The  investigation of the  natural  motions  for  the  other  regions (2.19) of 

variation of the  velocity  A  offers no difficulties  and  we  omit it. 

In the  problem  considered  there  exist  infinitely  many  critical  values of 

the  velocity  A  in  passing  through  which  the  degree of instability of the  undis- 

turbed  motion  changes.  For  example,  to  each  point  (2.18) of the  straight  line 

p = a 6 c o r r e s p o n d s ,  according  to  (2.8) , i ts   cri t ical   value of the  reduced 

velocity Am = 8 P m * 3 / 3 6   ( m  = 1, 2, ...), where any of the  intervals 

Azm-1 < A < Azm, m = 1, 2, ... , a s   i s  known,  belongs  to  the  instability  range 

of the  undisturbed  motion. 

The first, smallest   cri t ical   value of the  reduced  velocity A1 = 6.33, is of 

most  interest.  Assuming  that  the  reduced  velocity A is  connected  with  the 

velocity  c of the  undisturbed  motion of the  plane by formula  (1.4) , we  obtain 

the  smallest  critical  velocity: 
- 

As  an  example  let  us  consider a steel  plate  with  the  elasticity  constants 

E = 2.1 - 10IOkg/mZ , v = 0.3,  moving  in a gas  whose  state is character ized by 

the  constants K = 1.4, po = 103 - 102kg/m2, c,, = 340 m / s e c  (air at sea  level 

at temperature  15").  The  computation by formula  (3.1)  gives 

ck = 143.1O6(;r m / s e c  

3 
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FOE different  values of the  magnitude  a/2h  there  were  computed by for- 

mula  (3.2)  the  values Ck. The   resu l t s   a re  shown in  Fig. 8. 

In Figs.  5, 6, together  with  the  curves  in  the first quadrant ,   there   are  

shown curves  in  the  second  quadrant  that  correspond  to  negative  values of 

the  magnitude A, that  is,  to  undisturbed  motion 

of the  plate  in a direction  opposite  to  that which 

was  initially  assumed. 

t y  For  such  undisturbed 
motion of the  plate  in 

the  opposite  direction 

in  the  interval 0 5 -A < 
< 135 we  were not suc- 

st?lLf ces  sful  in  finding any 
Fig. 8. Fig. 9. cri t ical   values of the 

velocity.  For A = -135 

the  f irst  two eigenvalues of the  fundamental  boundary  problem  coincide: 

h1(-135) = hz(-135) = 649. With further  increase  in  the  modulus of the  velocity 

A the  eigenvalues h l ( A )  and h z ( A )  become  complex  conjugate  numbers. It i s  

possible  that at a certain  velocity -A 135 they  issue  beyond  the  limits of 

the  stability  parabola  and  flutter  then  occurs. 

In computing  the  critical  velocity Ck we assumed  that  the  reduced  velocity 

A was  connected  with  the  characteristic of the  plate,  the  gas,  and  the  velocity 

of the  undisturbed  motion c by the  formula (1.4) .  The  obtained  results  may 

be applied  to  cases of a more  general  dependence of the  reduced  velocity A 

on its  arguments,  assuming  for  example  for A the  expression 

- 

We have  considered a plate of infinite  span.  The  results  evidently  can 

refer  also  to  rectangular  plates  for which  the  dimension  along  the  y-axis  is 

several  times  greater  than  the  dimension  along  the  x-axis.  Such  cantilevers 

can  easily  be  mounted  in  an  artificially  produced flow directed  from  the  free 

to  the  clamped  edge of the  plate  (Fig. 9 ) .  Having established a constant  super 

sonic  velocity 5 and  gradually  increasing  the  dimension - a of the  plate 



up to  rupture, it is then  possible  to  apply  (1.4), ( 3 . 3 ) ,  or  some  other  expres- 

sion  for A, in  order  to  compare  the  theoretical   with  the  experimental   results.  

Translated  under NASA Contract 
by Consultants  Custom  Translations, Inc., 
New York, New York 
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